
ON THE THEORY OF THE GYRO HORIZON COMPASS 

(K TBORII SIKOSORIZONTKOKPASA) 

Iu. K. ZHBANOV 

(Yoeoow) 

(Received April f6, 1,962) 

The present article studies the effect of arbitrary misalignments and 
imbalances on the behavior of a gyro horizon compass. It gives an esti- 
mate of the azimuthal deviations of an unbalanced compass in a maneuver- 
ing vehicle and indicates the possibility of accurately measuring the 
imbalance from the curve of its azimuthal oscillations on a fired base 
if the damping is disconnected. 

An ideal gyro horizon compass [II is a two-gyroscope pendulum with 
specially selected parameters and couplings. A variant of such a pendulum, 
constructed in the form of a floating gyrosphere, is schematically illus- 
trated in Fig. 1. II denotes the total angular momentum of the two gyro- 
scopes; I is the unit vector along the compass vertical, directed from 
the center of gravity of the gyrosphere toward its geometrical center, 
which a*ts as a point of support; a is the distance from the center of 
gravity to the point of support (metacentric height); P is the mass of 
the gyrosphere. te shall call the trihedron 

which defines the orientation of the instrument, the “compass trihedron” 
The position and maneuvering of the point of support (or the base) with 
respect to the surface af the earth will be given bs the unit vector 
along the local vertical rI(t) directed from the center of the earth to 
the point of support. 

The special choice of the parameters of the gyropendulum reduces to 
the faot that for any H in the allowable range two conditions are satis- 
fied: 

1) The angular momentum vector is perpendicular to the compsss 

vertical 
H.r=O 
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2) The angular velocity of the compass trihedron in inertial space 
with respect to the total angular momentum is determined only by the 
internal couplings and is expressed by the formula 

*=A (R is the radius 
amR of the earth) 

1. The system of equations which describes the 
behavior of an ideal compass is of the form 

(1.1; 

Hxdr H i=oXr, a~~+ - 
amR 

The dots indicate differentiation in inertial Fig. 1. 
space. The right-hand side of the first equation 
represents the torque with respect to the point 
of support (Fig. 2) of the total force (-ngrl -nR”rI) acting with a lever 
arm -ar. The angular velocity vector of rotation of the compass trihedron. 
denoted by o, is determined to within the component along H by the motion 
of II itself, and the magnitude of the component along A is determined by 
condition (2); we shall consider below the question of satisfying this 
condition. Eliminating o from the system (1.1)) we obtain 

Hxr i=- 
amR 

(1.2) 

By the second equation of ( 1.2). we have 

H=amRrx; (1.3) 

After eliminating II on the assumption that an8 = const, the system be- _ _ 
comes [2J 

rXi=rX &+_E-rl ( R ) 

Fig. 2. 

or 

(1.4) 

The quantity a in (1.4) is charac- 
teristic of the reaction of the coupling 
r = 1. If the initial conditions are 

r (0) = rl (O), ; (0) = iI (1.5) 

the particular solution of the system 
(1.4) will be 

r = rl (t) (1.6) 
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The orientation of the compass trihedron in this ca8e is determined 
only by the position and velocity of the base, which make8 possible the 

use of the device a8 a navigational instrument. 

It should be noted that a compass 

centric height a(t) can have all the 

we apply to it the additional moment 

with an arbitrarily variable meta- 

properties of an ideal compasa if 

M*= LH 
a 

leaving condition8 (1) and (2) valid. The above transformation will lead 

to the equation8 (1.4) in this ca8e a8 Well. 

2. The possibility and the method8 of realizing the condition (1) are 

obvious. Let u8 consider the condition (2). The total angular momentum ll 

is obtained from two gyroscopes with individual angular momenta B1 and B2. 

The interaction of the gyroscopes reduce8 to the application of a torque 

N1 to the first gyroscope and a torque N1 to the second gyroscope. The 

torque8 N1 and N2 are equal in magnitude, opposite in 8enee and perpen- 

dicular to both angular momenta B, and B2, 80 that we may write 

The action of N1 and Nt produce8 a rotation of the plane of the 

angular momenta BIEp with respect to Inertial space, with an angular 

velocity bpl such that 

01 x B1 = N1, 01 x BB = NI (2.2) 

From (2.2), in view of (2.1). we c8n find 

al= ,&c;TBs, (Bl+Be)= 
,E&, ’ (2*3) 

If the plane of the angular momenta doe8 

doe8 not change It8 position in the compass 

trihedroni then co,, = PP~, and condition (2) 

reduce8 to the requirement [I] 

Fig. 3. 
N= IBlXBal or 

amR ’ 
N BlBa = -sin2e 

amR (2.4) 

It should be noted that if Y, the potential energy of the Bystem, 

change8 with the change in the angle 2~ between the gyroscopes, then 

N(e) = - &‘/3(2,>, and by (2.3) 

W 
al=-- 

H av H 

a(2.9 IBlxBal = aHH (2.5) 

Formula (2.5) make8 it possible to take into account both the action 
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of the internal elastic coupling and the effect of the external forces. 

In accordance with (2.4). condition (2) requires only the introduction 

of the elastic coupling; however, in order to find the compass north. we 

introduce an additional sector or anti-parallelogram coupling between the 

gyroscopes. In this event the axis of the case, which is completely de- 

termined. is always the bisecting line between the angular momenta and 

may be taken as compass north. The necessity for sector coupling will be 

eliminated if we can maintain conditions (1) and (2) and find the direc- 

tion of A by another method. 

3. In order to transform the compass equations, we introduce a new 

variable, the vector 

“_Hxr 
amR 

(3.1) 

directed along the east axis of the compass. Using (3.1) to eliminate A 

from the system (1.2) and using the coupling equation r = 1 to calculate 

its reaction, we obtain 

;.=il+ $rl-rp-r. (” ++)I, i=v (3.2: 

The system (3.2) is projected onto a horizontal plane r perpendicular 

to rl (Fig. 3). If we designate the projections of the vectors r, v. i, 

onto the plane r by p, II, vl, then 

* r=p +Jm, v = u +Orl, rl = v1 k=1/~,&!!) (3.3j 

In the plane r we introduce a coordinate system which does not rotate 

about ‘1. If differentiation in this system is denoted by d/dt. then 
(3.4; 

Substituting (3.3) and (3.4) into (3.2), we obtain 

$ + evl + rl (6 - vl.u) =2 -rlv12 +-$ rl- 

- (p + krl) k -$ + p - !$ - klvl* + va 1 
(3.5) 

The projection onto the Plane r is 

$ + kvl = u, 1 (3.6) 
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The vector p gives a direct indication of the deviation of compass 

vertical from true vertical. The angle between the vectors u and vl indi- 

cates the azimuthal rotation of the compass trihedron away from its un- 

disturbed position. If we neglect the vertical component of the earth’s 

centrifugal force 8v,, then the linear part of the system (3.6) will be 

& 
dt = u -vl* 

du dvl _ --- 
dt- dt 

+P 

Eliminating p and setting u - vl = w, we obtain from (3.7) [31 

(3.7) 

In accordance with (3.8). the vector w will, in the general case, de- 
scribe an ellipse with a Schuler frequency, at \I (g/R rad/sec. The azi- 

muthal deviation, being the angle between the vectors vl and vl + m, de- 

pends on vl, which is determined by the location and maneuver of the base. 

In the stationary position, the vector VI rotates in the plane r with a 

velocity II sin 9 (the vertical component of angular velocity of rotation 

of the earth), so that in the azimuthal oscillations of the compass we 

observe pulsations with a period of the order of 2*/U sin 9. The ampli- 

tude of the azimuthal oscillations is maximum (antinode of the pulsa- 

t ions), when the vector vl is perpendicular to the major axis of the 

ellipse of the oscillations of ‘I, and it is a minimum (node) when vl is 

directed along that axis. 

4. The action of any oscillations can be reduced. in this or another 

manner, to some external M+ and to a distortion of the angular velocity 

of the compass trihedron with respect to the angular momentum, A. The 

torque M* may be represented in the form 

M*=u~R(~XF+~MZ) (r . F = 0) 

The compass equation system. similar to (1.1)) becomes 

ti==amRrX &+srl +amRr XF+ramRM, 
) 

. 
r=oxr, HXti w=~+-$++A 

After eliminating o and introducing the variable v in accordance with 

formula (3.1). we obtain a system similar to (3.2) 

(4.2) 

Using equations (3.3) and (3.4) directly, we can write the projection 
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of the system (4.2) on the plane r 

dP 
dt=U 

_--_kvl”+(i+~)v~+p. ($+F)]+F-0~1 (4.3) 

If we consider that the disturbance A is of the order of u and if we 
neglect the vertical component of the centrifugal force of the earth, 
then after dropping terms known to be second-order terms, the system 
(4.3) becomes 

dp M 
-= z rxxu ~-VI++ A -yuf S=dl__ g 
dt dt dt T~+F (4.41 

5. Ue consider a compass (Fig. 4) in which the rotation axes of the 
cases are not parallel to one another and are arbitrarily oriented with 
respect to the lines of “pendulosity”, the center of gravity of each 
gyroscope is displaced from the axis of rotation of the case, and the 
angular momenta of the gyroscopes are not perpendicular Lo the rotation 
axis of their cases. In 

Fig. 4. 

this case there is no simple relation between the 
directions of the compass vertical r and the 

angular momenta B1 and B2, so that it is advis- 
able to consider two trihedra: the base trihedron 

BI + Bz Bl x B2 @I + W x (BI x W 
I BI + Ba I ’ I BI X Bs. I ’ I BI + Bz 1 I & x Bz I 1 

and the compass trihedron 

{ 
H 

-, r, 
Bxr 

H - 
H 

where I is the component of the vector 81 + B2 
perpendicular to r. We introduce the notation 

% = B, + 32; we than have 

H=rx(&xr), &=H+r(H1.r) 

As a result of the misali~ments and imbalances, the orientation of 
the compass vertical r and the position of the center of gravity - ar 
with respect to the base trihedron, are found to be dependent on the 

angle of separation of the gyroscopes, that is, on H,. As H, varies. the 
vector r is displaced in the base trihedron with a velocity (ar/?H1) 
(dH,/dt), so that the compass equations, similar to (1.1). become 

C.5.11 
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Here ml is the angular velocity vector of the rotation of the base 

trihedron. The last term on the right-hand Bide of the third equation is 

due to the fact that 88 HI varies, work is done not only by the internal 

forces (see Section 2) but al80 by tbe external force (- &r, - mgrl) on 

the displacement of the center of gravity (- $ar)/%l)(dIfl/dt). Passing 

to vector8 of the compass trihedron in (5.1). we obtain (5.2) 

The expression for the projection of the angular velocity of the com- 

pass trihedron on the dfrection of the angular momentum is obtained, 
using (5. l), by the formula 

0, = (r Xi) .a (5.3) 

Carrying out the calculations, we obtain 

When we have set up (5.4) and transformed the right-hand side of the 

first equation, the system (5.2) reduces to a form similar to (4.1) 

_ramR a(H1.r) ;;+ J_rl 
HI aH1 ( R 

.(Hxr)+rxo(Hl*r) 

. 
r=oxr (5.5) 

cu_HXh I H ;;+g” HrnR aa 
H2 --- dmR HI aH1 ( R) 

.r-- H ad az4 ( ii1 I g; ) . a 
H HI 

It is easily observed that the disturbances, which distinguish the 

system (5.5) from (1.11, vanish if the condition8 

are satisfied. 

a = const, &.r=O (5.6) 

In accordance with (5.6), the east imbalance is constant, and further- 

more, the deviation of the axes of rotation of the ca8es about the east 

axis by equal angles in different directions, resulting in a variable 

east imbalance, do not produce any disturbances. 

6. If we desire an approximate formulation, then, comparing (5.5) with 

(4.11, we can consider 

A =_amR a(H1.r) ;I +Lrl -- 
( 1 

. E 
Hl aH1 R H’ 

F=O 

M,=_~~ 
HI aH, ( (‘3.1) 
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Passing from (6;l) to the variable system (4.4) and retaining the 

linear term, we obtain 

F=O, IV,=--8 - $ (fi.2) 

Here we introduce the notation for the generalized imbalance angle 

Taking (6.2) into consideration, the system (4.4) becomes 

-=u-vvl_tbi & du du dvl 
dt u. 

TlXx, -=-&- 
dt 

-$P 

Eliminating p and using the variable m (3.8). we obtain 

(6.4) 

(65) 

According to (6.5). for the case of free oscillations (dvl/dt I 0) 

the vector m describes an ellipse rotating in the plane I- with an angular 

velocity of 

The frequency of the pulsations of the azimuthal oscillations is equal 

to the difference between the angular velocities of the geographical axes 
and the axes of the ellipse. which corresponds to a pulsation period of 

T= 2-c 24 

U sin cp + & +- 
I 

, or in hours T= 

I 
i44 B 

(6.6) 
sin cp + - 

co9 cp 

After a short maneuver which changes the absolute velocity v1 by Av, 
the state of a previously undisturbed compass is given, according to 

(6.4), by the following values of the coordinates 

p =%I xAv, 
U 

The corresponding azimuthal deviation 
tions is expressed by the formula 

Aa,,,=% 
cos cp 

u = VI 

at the antinode of the pulsa- 

6 !!E 
Vl 

(6.7) 
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